Dynamic Reconstruction Algorithm of Three-Dimensional Temperature Field Measurement by Acoustic Tomography

نویسندگان

  • Yanqiu Li
  • Shi Liu
  • Schlaberg H. Inaki
چکیده

Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography

The aim of this study was to reveal biometric peculiarities of New Zealand white rabbit antebrachium (radius and ulna) by means of three-dimensional (3D) reconstruction of multidetector computed tomography (MDCT) images. Under general anesthesia, the antebrachiums of a total of sixteen rabbits of both sexes were scanned with a general diagnostic MDCT. Biometric measurements of the reconstructed...

متن کامل

Interferometric Tomography Measurement of the Temperature Field in the Vicinity of a Dendritic Crystal Growing from a Supercooled Melt

The shape of a crystal growing from a supercooled pure melt is influenced by the temperature-dependent kinetics of the nucleation on the interface. In the course of this growth, heat is released from the interface, thus feeding back on the temperature field. In this intrinsically nonlinear process, the three-dimensional temperature field in the fluid is a vital dynamic parameter which has not b...

متن کامل

Acoustic tomography in the atmospheric surface layer

Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements o...

متن کامل

Recent Progress in Acoustic Travel-Time Tomography of the Atmospheric Surface Layer

Acoustic tomography of the atmospheric surface layer (ASL) is based on measurements of the travel times of sound propagation between sources and receivers which constitute a tomography array. Then, the temperature and wind velocity fields inside the tomographic volume or area are reconstructed using different inverse algorithms. Improved knowledge of these fields is important in many practical ...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017